Statistical methods for analyzing and comparing single-cell gene expression data

Skye 284 / Zoom

Dr. Wei Li, University of California, Riverside

Single-cell gene expression data provide an opportunity to characterize the molecular features of diverse cell types and states in tissue development and disease progression. However, it remains a challenge to construct a comprehensive view of single-cell transcriptomes in health and disease, due to the knowledge gap in properly modeling the high-dimensional, sparse, and noisy data. In this talk, I will introduce two statistical methods we have developed for analyzing and comparing single-cell gene expression data. The first one is an integration method which enables joint analysis of single-cell samples from different biological conditions. This method can learn coordinated gene expression patterns that are common among, or specific to, different biological conditions, and identify cellular types  across single-cell samples. I will also discuss the applicability of our method in diverse biomedical problems. The second one is a computational method for identifying, quantifying, and comparing RNA transcripts from scRNA-seq data. Accurate and sensitive profiling of RNA transcripts is of great importance in understanding the mechanisms and consequences of gene expression regulation and can have diagnostic values in clinical settings. We propose a method to address computational questions arising from this biological problem.

Zoom ID: 936 4929 5171
Passcode: 918117

Target Audience
General Public