\ Quantitative Personalized Oncology

®
MOFFITT

CANCER CENTER

UM@ Heiko Enderling, Ph.D.

Associate Professor

Department of Integrated Mathematical Oncology
Department of Radiation Oncology

H. Lee Moffitt Cancer Center & Research Institute
Tampa, FL USA

heiko.enderling@moffitt.org
http://lab.moffitt.org/enderling

YW @EnderlingLab



mailto:heiko.enderling@moffitt.org
http://lab.moffitt.org/enderling

VL,
®
MOFFITT

CANCER CENTER

No financial conflict of interest to disclose.

| will be discussing research for which provisional patent applications
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- U.S. Patent 62/944,804: Methods for prostate cancer intermittent adaptive therapy (provisional)
- U.S. Patent 63/010,327: Forecasting individual patient response to radiotherapy with a dynamic carrying capacity
model (provisional)



\f uantitative Personalized Oncology

®

MOFFITT

CCCCCCCCCCCC @EnderlinglLab

Mission: To integrate quantitative modeling into oncology decision making

Vision: Optimal adaptive cancer therapy for each patient

Strategy: - understand clinical needs
- foster synerqistic collaborations
- build calibrated and validated mathematical models of cancer
dynamics that provide
- dynamic biomarkers and
- actionable triggers for treatment personalization
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Prediction is very
difficult, especially
about the future.

Niels Bolv

..our ability to predict the
future is severely limited
by the complexity of the
equations...

Stephen Hawking
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 “A climate computer model is not trusted unless it can predict
the past.”

* “Any proposed set of statistics is not considered to be of any
value unless it can be used to show outcomes of a past
[baseball] season”.

Brady & Enderling, Bull. Math. Biol., 2019
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Androgen Independent Androgen Dependent

Isaacs & Coffey, Prostate, 1989
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e Does a PCaSC model fit clinical data ?

e Can early treatment response predict outcomes ?

* Can the model predict alternative treatment that
would improve outcomes”
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Final Results of the Canadian Prospective Phase I
Trial of Intermittent Androgen Suppression for Men
in Biochemical Recurrence after Radiotherapy

for Locally Advanced Prostate Cancer

Clinical Parameters

Nicholas Bruchovsky, mp, php'
Laurence Klotz, wp?

Juanita Crook, mp®

Shawn Malone, mp*

Charles Ludgate, mo®

W. James Morris, mp®

Martin E. Gleave, wo'

S. Larry Goldenberg, mp’

BACKGROUND. This prospective Phase II study was undertaken to evaluate inter-
mittent androgen suppression as a form of therapy in men with localized pros-
tate cancer who failed after they received external beam irradiation.

METHODS. Patients who demonstrated a rising serum prostate-specific antigen
(PSA) level after they received radiotherapy and who were without evidence of
distant metastasis were accepted into the study. Treatment in each cycle con-
sisted of cyproterone acetate given as lead-in therapy for 4 weeks, followed by a
combination of leuprolide acetate and cyproterone acetate, which ended after a
total of 36 weeks.

e —

ormone Therapy

e 103 patients with
intermittent ADT

e PSA measurements
every four weeks

B ———_—

Cancer 2006;107:389-95. © 2006 American Cancer Society.
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PSA dynamics during ADT
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Four no more:

The ‘PSA cutoff era’ is over

ROSTATE-SPECIFIC ANTIGEN (PSA) test-

ing has been mired in controversy
throughout the short time it has been a clin-
ical tool for detecting prostate cancer.
During the first decade after it was approved
for prostate cancer screening, the dogma pre-
vailed that the upper limit of normal was 4.0
ug/L. Healthy patients with values above this
cutoff were believed to be at risk of prostate
cancer and were usually advised to undergo
biopsy. Patients with levels below this
threshold were told they had normal readings
and were reassured that they did not have
prostate cancer.

I NO PSA VALUE
RULES CANCER IN OR OUT

shown that many men with “normal” PSA
values harbor prostate cancer. The most defin-
itive was the Prostate Cancer Prevention
Trial,34 which found no PSA level below
which prostate cancer can be ruled out, and
no level above which prostate cancer is cer-
tain (FIGURE 1).

An individual patient’s PSA value is only
part of the equation. Other risk factors need to
be considered, such as his age, race, family his-
tory, findings on digital rectal examination,
prostate size, results of earlier prostate biop-
sies, percent free PSA ratio, and whether he
takes a 5-alpha reductase inhibitor. Moreover,
PSA levels in men who have undergone treat-
ment for prostate cancer are completely inde-
pendent of the reference ranges in widespread
laboratory use, making such references and
thresholds even more meaningless in this set-
ting.

e EEE———
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Brady-Nicholls et al., Nat. Commun. 2020
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Final Results of the Canadian Prospective Phase Il
Trial of Intermittent Androgen Suppression for Men

in Biochemical Recurrence after Radiotherapy
for Locally Advanced Prostate Cancer

Clinical Parameters

Nicholas Bruchovsk
Laurence Klotz, mp?
Juanita Crook, mp®

Shawn Malone, mo*
Charles Ludgate, mp
W. James Morris, mi
Martin E. Gleave, mp
S. Larry Goldenberg

M Concer =

107(2), 389-395, 2006

ndrogen Deprivation

Number of patients: 70
Total data points: 3,101
Avg. data points / patient: 43

—
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* Does a PCaSC model fit the data 7 /

e Can early treatment response predict outcomes ?

e Can the model predict alternative treatment that
would improve outcomes”
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* Does a PCaSC model fit the data 7 /

e Can early treatment response predict outcomes “? /

e Can the model predict alternative treatment that
would improve outcomes”
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Should we give concurrent
chemotherapy early (castration naive)
or late (castration resistant)?
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PCa stem Differentiated Prostate-specific
cells cells antigen

ADT
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from added chemo ?
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e Can early treatment response predict outcomes “? /

e Can the model predict alternative treatment that
would improve outcomes”
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evaluated PSA dynamics as dynamic biomarker

PCaSC mathematical model of ADT response/resistance

trained for PCa patient cohort and individual patients

validated on untrained data set

predict response to given therapy with 91% accuracy

makes testable predictions of alternative treatment protocols
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OPEN
Prostate-specific antigen dynamics predict
individual responses to intermittent androgen
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Jingsong Zhang’, Robert A. GatenbyBE & Heiko Enderling@1g
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Reality

All models are wrong - some are useful [George Box]

As simple as possible (given sparse data), but not
simpler than necessary [Albert Einstein]

Model can only proot ideas wrong, but never right
(plausible at best)

Many models may explain data equally well, but may
predict different outcomes

* VALIDATION VALIDATION VALIDATION !
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Will Doctors Fear Being Will Al replace doctors in the future?
Replaced by Al in the Hospital P '
Settling? June 26,
Last updated on April 29, 2018 Kumba Sennaar 2018
| — —

o Intelligence Replace Doctors?

As medical professionals continue to turn to machine-learning
@ technology like IBM Watson to boost diagnosis and treatment,
we address myths and truths about introducing Al for

healthcare.

e — E—

* Quantitative approaches will not replace the
oncologist !

* [he oncologist who uses quantitative approaches
may replace the oncologist who does not.
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Cancer Biology
Cancer Chemical Biology

Cancer Immuno logy and
Immunotherapy

Integrated Mathematical
Oncology
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